Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Signal Transduct Target Ther ; 9(1): 66, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38472195

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease worldwide, and the development of non-alcoholic steatohepatitis (NASH) might cause irreversible hepatic damage. Hyperlipidemia (HLP) is the leading risk factor for NAFLD. This study aims to illuminate the causative contributor and potential mechanism of Kallistatin (KAL) mediating HLP to NAFLD. 221 healthy control and 253 HLP subjects, 62 healthy control and 44 NAFLD subjects were enrolled. The plasma KAL was significantly elevated in HLP subjects, especially in hypertriglyceridemia (HTG) subjects, and positively correlated with liver injury. Further, KAL levels of NAFLD patients were significantly up-regulated. KAL transgenic mice induced hepatic steatosis, inflammation, and fibrosis with time and accelerated inflammation development in high-fat diet (HFD) mice. In contrast, KAL knockout ameliorated steatosis and inflammation in high-fructose diet (HFruD) and methionine and choline-deficient (MCD) diet-induced NAFLD rats. Mechanistically, KAL induced hepatic steatosis and NASH by down-regulating adipose triglyceride lipase (ATGL) and comparative gene identification 58 (CGI-58) by LRP6/Gɑs/PKA/GSK3ß pathway through down-regulating peroxisome proliferator-activated receptor γ (PPARγ) and up-regulating kruppel-like factor four (KLF4), respectively. CGI-58 is bound to NF-κB p65 in the cytoplasm, and diminishing CGI-58 facilitated p65 nuclear translocation and TNFα induction. Meanwhile, hepatic CGI-58-overexpress reverses NASH in KAL transgenic mice. Further, free fatty acids up-regulated KAL against thyroid hormone in hepatocytes. Moreover, Fenofibrate, one triglyceride-lowering drug, could reverse hepatic steatosis by down-regulating KAL. These results demonstrate that elevated KAL plays a crucial role in the development of HLP to NAFLD and may be served as a potential preventive and therapeutic target.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Serpinas , Humanos , Ratones , Ratas , Animales , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Inflamación/metabolismo , Ratones Transgénicos
2.
Cell Commun Signal ; 22(1): 78, 2024 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-38291510

RESUMEN

BACKGROUND: Renal fibrosis significantly contributes to the progressive loss of kidney function in chronic kidney disease (CKD), with alternatively activated M2 macrophages playing a crucial role in this progression. The serum succinate level is consistently elevated in individuals with diabetes and obesity, both of which are critical factors contributing to CKD. However, it remains unclear whether elevated succinate levels can mediate M2 polarization of macrophages and contribute to renal interstitial fibrosis. METHODS: Male C57/BL6 mice were administered water supplemented with 4% succinate for 12 weeks to assess its impact on renal interstitial fibrosis. Additionally, the significance of macrophages was confirmed in vivo by using clodronate liposomes to deplete them. Furthermore, we employed RAW 264.7 and NRK-49F cells to investigate the underlying molecular mechanisms. RESULTS: Succinate caused renal interstitial macrophage infiltration, activation of profibrotic M2 phenotype, upregulation of profibrotic factors, and interstitial fibrosis. Treatment of clodronate liposomes markedly depleted macrophages and prevented the succinate-induced increase in profibrotic factors and fibrosis. Mechanically, succinate promoted CTGF transcription via triggering SUCNR1-p-Akt/p-GSK3ß/ß-catenin signaling, which was inhibited by SUCNR1 siRNA. The knockdown of succinate receptor (SUCNR1) or pretreatment of anti-CTGF(connective tissue growth factor) antibody suppressed the stimulating effects of succinate on RAW 264.7 and NRK-49F cells. CONCLUSIONS: The causative effects of succinate on renal interstitial fibrosis were mediated by the activation of profibrotic M2 macrophages. Succinate-SUCNR1 played a role in activating p-Akt/p-GSK3ß/ß-catenin, CTGF expression, and facilitating crosstalk between macrophages and fibroblasts. Our findings suggest a promising strategy to prevent the progression of metabolic CKD by promoting the excretion of succinate in urine and/or using selective antagonists for SUCNR1.


Asunto(s)
Insuficiencia Renal Crónica , beta Catenina , Masculino , Ratones , Animales , beta Catenina/metabolismo , Ácido Succínico/metabolismo , Liposomas/metabolismo , Ácido Clodrónico/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Insuficiencia Renal Crónica/metabolismo , Fibrosis , Macrófagos/metabolismo
3.
Invest Ophthalmol Vis Sci ; 64(12): 15, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37682567

RESUMEN

Purpose: Retinal pigment epithelium (RPE) dysfunction induced by oxidative stress-related epithelial-mesenchymal transition (EMT) of RPE is the primary underlying mechanism of age-related macular degeneration (AMD). Kallistatin (KAL) is a secreted protein with an antioxidative stress effect. However, the relationship between KAL and EMT in RPE has not been determined. Therefore we aimed to explore the impact and mechanism of KAL in oxidative stress-induced EMT of RPE. Methods: Sodium iodate (SI) was injected intraperitoneally to construct the AMD rat model and investigate the changes in RPE morphology and KAL expression. KAL knockout rats and KAL transgenic mice were used to explain the effects of KAL on EMT and oxidative stress. In addition, Snail overexpressed adenovirus and si-RNA transfected ARPE19 cells to verify the involvement of Snail in mediating KAL-suppressed EMT of RPE. Results: AMD rats induced by SI expressed less KAL in the retina, and KAL knockout rats showed RPE dysfunction spontaneously where EMT and reactive oxygen species (ROS) production increased in RPE. In contrast, KAL overexpression attenuated EMT and ROS levels in RPE, even in TGF-ß treatment. Mechanistically, Snail reversed the beneficial effect of KAL on EMT and ROS reduction. Moreover, KAL ameliorated SI-induced AMD-like pathological changes. Conclusions: Our findings demonstrated that KAL inhibits oxidative stress-induced EMT by downregulating the transcription factor Snail. Herein, KAL knockout rats may be an appropriate animal model for observing spontaneous RPE dysfunction for AMD-like retinopathy, and KAL may represent a novel therapeutic target for treating dry AMD.


Asunto(s)
Atrofia Geográfica , Degeneración Macular , Serpinas , Animales , Ratones , Ratas , Células Epiteliales , Transición Epitelial-Mesenquimal , Degeneración Macular/genética , Ratones Transgénicos , Estrés Oxidativo , Especies Reactivas de Oxígeno , Pigmentos Retinianos , Serpinas/genética
4.
FASEB J ; 37(4): e22878, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36939278

RESUMEN

Retinal fibrosis is a severe pathological change in the late stage of diabetic retinopathy and is also the leading cause of blindness. We have previously revealed that N-cadherin was significantly increased in type 1 and type 2 diabetic mice retinas and the fibrovascular membranes from proliferative diabetic retinopathy (PDR) patients. However, whether N-cadherin directly induces retinal fibrosis in DR and the related mechanism is unknown. Here, we investigated the pathogenic role of N-cadherin in mediating retinal fibrosis and further explored the relevant therapeutic targets. We found that the level of N-cadherin was significantly increased in PDR patients and STZ-induced diabetic mice and positively correlated with the fibrotic molecules Connective Tissue Growth Factor (CTGF) and fibronectin (FN). Moreover, intravitreal injection of N-cadherin adenovirus significantly increased the expression of FN and CTGF in normal mice retinas. Mechanistically, overexpression of N-cadherin promotes N-cadherin cleavage, and N-cadherin cleavage can further induce translocation of non-p-ß-catenin in the nucleus and upregulation of fibrotic molecules. Furthermore, we found a novel N-cadherin cleavage inhibitor, pigment epithelial-derived factor (PEDF), which ameliorated the N-cadherin cleavage and subsequent retinal fibrosis in diabetic mice. Thus, our findings provide novel evidence that elevated N-cadherin level not only acts as a classic EMT maker but also plays a causative role in diabetic retinal fibrosis, and targeting N-cadherin cleavage may provide a strategy to inhibit retinal fibrosis in DR patients.


Asunto(s)
Cadherinas , Diabetes Mellitus Experimental , Retinopatía Diabética , Animales , Humanos , Ratones , beta Catenina/metabolismo , Cadherinas/metabolismo , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/metabolismo , Retinopatía Diabética/metabolismo , Fibrosis
5.
Am J Physiol Cell Physiol ; 324(2): C467-C476, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36622070

RESUMEN

Succinate has long been known to be only an intermediate product of the tricarboxylic acid cycle until identified as a natural ligand for SUCNR1 in 2004. SUCNR1 is widely expressed throughout the body, especially in the kidney. Abnormally elevated succinate is associated with many diseases, including obesity, type 2 diabetes, nonalcoholic fatty liver disease, and ischemia injury, but it is not known whether succinate can cause kidney damage. This study showed that succinate induced apparent renal injury after treatment for 12 wk, characterized by a reduction in 24 h urine and the significant detachment of the brush border of proximal tubular epithelial cells, tubular dilation, cast formation, and vacuolar degeneration of tubular cells in succinate-treated mice. Besides, succinate caused tubular epithelial cell apoptosis in kidneys and HK-2 cells. Mechanistically, succinate triggered cell apoptosis via SUCNR1 activation. In addition, succinate upregulated ERK by binding to SUCNR1, and inhibition of ERK using PD98059 abolished the proapoptotic effects of succinate in HK-2 cells. In summary, our study provides the first evidence that succinate acts as a risk factor and contributes to renal injury, and further research is required to discern the pathological effects of succinate on renal functions.


Asunto(s)
Diabetes Mellitus Tipo 2 , Ácido Succínico , Animales , Ratones , Apoptosis , Diabetes Mellitus Tipo 2/patología , Células Epiteliales/metabolismo , Riñón/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Succinatos , Ácido Succínico/metabolismo
6.
Biochem Biophys Res Commun ; 585: 146-154, 2021 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-34808498

RESUMEN

Age-related macular degeneration (AMD) is a common cause of vision loss. The epithelial-mesenchymal transition (EMT) of retinal pigment epithelial (RPE) cells, accompanied by oxidative damage, plays a crucial role in AMD. It is well known that manganese superoxide dismutase (MnSOD) encoded by SOD2 is a critical molecule in fighting against oxidative stress, and Snail encoded by SNAI1 is the essential transcription factor for EMT. However, the effect of MnSOD on EMT and the underlying mechanism in RPE cells remains unknown. In this study, we found that MnSOD knockdown triggered the EMT by upregulating Snail, while MnSOD overexpression reversed EMT even with TGFß treatment in RPE cells, and the anti-oxidative stress activity of MnSOD mediated this observation. In addition, Snail depletion increased both expression and activity of MnSOD while Snail overexpression decreased MnSOD expression and activity, and Dual-luciferase reporter and ChIP assays showed that Snail directly bound to E-box (CACCTG) in the SOD2 promoter. Moreover, MnSOD over-expression and Snail interference co-treatment strengthened the anti-oxidation and EMT reversing. Therefore, our findings demonstrate that MnSOD prevents EMT of RPE cells in AMD through inhibiting oxidative injury to RPE. Moreover, a critical EMT transcription factor, Snail, functions as a new negative transcriptional factor of SOD2. Herein, the Snail-MnSOD axis forms a mutual loop in the development of AMD, which may be a novel systemic treatment target for preventing AMD.


Asunto(s)
Biomarcadores/metabolismo , Transición Epitelial-Mesenquimal/genética , Degeneración Macular/genética , Epitelio Pigmentado de la Retina/metabolismo , Factores de Transcripción de la Familia Snail/genética , Superóxido Dismutasa/genética , Western Blotting , Línea Celular , Células Epiteliales/metabolismo , Regulación de la Expresión Génica , Humanos , Degeneración Macular/metabolismo , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Epitelio Pigmentado de la Retina/citología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Transcripción de la Familia Snail/metabolismo , Superóxido Dismutasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...